Skip to main content

Model Equations

The relationship between time and position gives:

(1) rij=rirj=(ri0+ui(tt0))(rj0+uj(tt0))r_{ij} = r_i - r_j = (r^0_i + u_i(t-t_0)) - (r^0_j + u_j(t-t_0))

=(rijx,rijy,rijz)= (r^x_{ij}, r^y_{ij}, r^z_{ij})

where rir_i is the vector (rix,riy,riz)(r^x_i, r^y_i, r^z_i) position of the ithi^{th} particle and $ u_i$ is the vector velocity.

Note: html to make bold typeface for vectors in math mode is unknown to this author. Sorry.

At the time of contact, tijct^c_{ij}, we have ,

(2) σij2=(rijc)2={(ri0+uitijc)(rj0+ujtijc)}2\sigma^2_{ij} = (r^c_{ij})^2 = \{(r^0_i + u_it^c_{ij}) - (r^0_j + u_jt^c_{ij})\}^2 {(rij+uijtijc)}2={rijrij+2tijcrijuij+uij(tijc)2}\equiv \{(r_{ij} + u_{ij}t^c_{ij})\}^2 = \{r_{ij} \bullet r_{ij} + 2t^c_{ij}r_{ij} \bullet u_{ij} + u_{ij}(t^c_{ij})^2\}

Where rij=(rijrij)1/2={(rijx)2+(rijy)2+(rijz)2}1/2r_{ij} = (r_{ij} \bullet r_{ij})^{1/2} = \{ (r^x_{ij})^2 + (r^y_{ij})^2 + (r^z_{ij})^2 \}^{1/2}

The relation leads to a quadratic equation for the ij collision time, tijc(tijt0)t^c_{ij} \equiv (t_{ij} - t_0).

(3) uij2(tijc)2+2bijtijc+rij2σij2=0u^2_{ij}(t^c_{ij})^2 + 2b_{ij}t^c_{ij} + r^2_{ij} - \sigma^2_{ij} = 0

(4) tijc={bij(bij2uij2(rij2σij2))1/2}/uij2{bijDij1/2}/uij2t^c_{ij} = \{-b_{ij} - (b^2_{ij} - u^2_{ij}(r^2_{ij} - \sigma^2_{ij}))^{1/2} \} / u^2_{ij} \equiv \{-b_{ij} - D^{1/2}_{ij}\} / u^2_{ij}

Where :

(5) bij=rijuijb_{ij} = r_{ij} \bullet u_{ij}

(6) uij2=(uiuj)2u_{ij}^2 = (u_i - u_j)^2

(7) Dij=(bij2uij2(rij2σij2))D_{ij} = (b^2_{ij} - u^2_{ij}(r^2_{ij} - \sigma^2_{ij})) \equiv discriminant. Note that uiju_{ij} in m/s is a large number while rijr_{ij} is very small.

SeparatingApproaching, but missColliding
bi>0b_{i} > 0 (forget about it)Dj<0D_{j} < 0 (forget about it)Dj>0D_{j} > 0 (schedule it)

At the time of the collision, the velocities of the particles change according to,

(8) uimj=2(bijc/σ2)rijc(mi+mj)=ujmi\frac{\vartriangle u_i}{m_j} = \frac{-2(b^c_{ij} / \sigma^2)r^c_{ij}}{(m_i + m_j)} = \frac{-\vartriangle u_j}{m_i}

We can derive this formula by assuming that particle j is stationary (reference frame) and particle i is moving on the x-axis with equal mass. The j-direction after collision is given by the line of action rijcr^c_{ij}, since that is all j feels about momentum change. Conservation of momentum means that uif+ujf=uiiu^f_i + u^f_j = u^i_i with the geometric interpretation of a sum of vectors in the form of a triangle. Conservation of energy gives (uif)2+(ujf)2=(uii)2(u^f_i)^2 + (u^f_j)^2 = (u^i_i)^2. The Pythagorean theorem applied to the conservation of energy means that this triangle must be a right triangle. Therefore, we can rotate the coordinate system such that y=uif;x=uif;uif=uiicosθ;ujf=uiisineθy = u^f_i; x = u^f_i; u^f_i = u^i_i cos \theta; u^f_j = u^i_i sine\theta

Note that rijcr^c_{ij} and bijcb^c_{ij} must be updated to the point of collision before computing the velocity changes.